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Abstract

Purpose – The purpose of this paper is to study experimentally enhancement of heat transfer in a
tube with axial swirling-flow promoters. The geometric features of flow geometry to improve heat
transfer can be selected in order to yield the maximum opposite reduction in heat exchange flow
irreversibility by using exergy-destruction method. The paper seeks to illustrate the use of neural
network approach to analyze heat transfer enhancement data for further study in the scope of the
experimental program.

Design/methodology/approach – For this purpose, 402 experimental measurements are collected.
About 225 of those are used as training data for neural networks, the rest is used for testing. Then, these
testing results of artificial neural network (ANN) and experimental data are compared. A formula for
presenting exergy loses in a tubular heat exchanger is derived first and then the thermodynamic
optimum instead of economic optimum is found by minimizing the exergy losses in the system.

Findings – Results from all configurations studied show that the heat transfer rate of the heated
increases when the swirling-flow promoter is inserted. From the heat transfer improvement number
defined, it is observed that about 100 percent increase in heat transfer rate and five times increase in
the pressure drop can be achieved under the condition of constant flow for the single promoter which
has three blades, its blade angle is 308 and its location is in the middle of the tube length.

Research limitations/implications – The back-propagation (BP) algorithm was selected as the
neural network algorithm, which uses the generalized delta learning rule. The training time of BP
algorithm is considerably long. However, the testing of our neural network is real-time.

Practical implications – The experimental setup is established to collect the experimental data. It
consists of an entrance region, test region (heat exchanger and steam generator), and, flow
measurement and control. Also, a software program of neural networks trained BP is written by using
Pascal high-level languages.

Originality/value – An alternative and new approach is proposed in the paper to find optimum flow
geometry for a pipe flow with an axial swirling-flow promoter inserts. It is too difficult to predict the
response of a complex physical system that cannot be easily modeled mathematically. The result thus
obtained compare well with experimental results, but the computational effort of the ANN and time
required in the analysis is much faster as compared. These results show that the ANN can be used
efficiently for prediction.
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Nomenclature
Oi ¼ The output of unit i for multi-layer

perceptron (MLP)
tpj ¼ Target values of MLP
wij ¼ The weight of the connection from unit j

to unit i of MLP
uj ¼ The bias of unit
f(x) ¼ Transfer function used ANN structure
Ep ¼ The mean squared error (MSE)
Dp ¼ The generalized delta rule learning
1 ¼ Learning rate
D ¼ diameter of the pipe (m)
Cp ¼ constant pressure specific heat for air

(kJ/kgK)
f ¼ friction factor, DP=ð4L=DÞðrU 2=2Þ
I ¼ irreversibility (W)
L ¼ length of the pipe (m)
_m ¼ mass flow rate (kg/s)
Nu ¼ Nusselt number based on the pipe

diameter, hD/k
U ¼ Mean velocity of air flowing inside the

pipe (m/s)

P1 ¼ air pressure (abs) at the inlet of the pipe
(kPa)

P2 ¼ air pressure (abs) at the exit of the pipe
(kPa)

R ¼ gas constant for air (kJ/kgK)
Re ¼ Reynolds number based on pipe

diameter, 4 _m=pmD
T1 ¼ bulk temperature of air at the inlet of

the pipe (K)
T2 ¼ bulk temperature of air at the exit of the

pipe (K)
To ¼ ambient temperature (K)
Tw ¼ wall temperature of the pipe (K)

Greek symbols
a ¼ momentum coefficient
m ¼ dynamic viscosity of air (N.s/m2)
r ¼ density of air (kg/m3)
D ¼ difference

Introduction
The engineering discipline of heat transfer, specifically deals with the analysis, design,
and control of systems, and has a long history of development in response to the needs
in a great variety of applications. It is widely recognized that the internal dynamics of
heat and moisture transfer in an imperfectly mixed ventilated airspace have a fairly
complex and spatially heterogeneous nature. It is a major challenge to control these heat
and moisture transfer dynamics by using model-based control theory. However, before
this can be applied, it is first required to have an appropriate dynamic model of the
process to be controlled. Over the past decades, this has led to the development of
sophisticated computational fluid dynamics (CFD) models which offer bright prospects
as a design, and process optimization tool, but are too complex to be used for
model-based control purposes. Towards the opposite end of data-based or statistical
methods which allow to model the apparently complex nature of the heat and moisture
transfer process in a dynamically simplified manner. Applications of these methods are
quickly spreading areas of science and engineering especially for complex systems
where more traditional methods have failed to be useful (Kawamura, 1977; Saad, 1998;
Mahmud and Fraser, 2002). To investigate the mechanism of heat transfer
augmentation, numerical computations of turbulent flow and heat transfer in a
parallel plate channel, attached transversely with turbulence promoters at regular
intervals on the lower surface, have been performed by using a simple turbulence model
and the finite element method (Kimitoshi et al., 2003). The optimum array geometries are
determined based on comparison of the average surface Nusselt number (Nu).

The second law analysis of flow and heat transfer through a single tube and bundle of
tubes for a periodic flow configuration and entropy generation profiles for various profiles
are investigated (Haddad et al., 2004; Luiz and Bejan, 2001). Second law characteristics of
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heat transfer and fluid flow due to forced convection of steady laminar flow of
incompressible fluid inside channel with circular cross section and channel made of two
parallel plates is analyzed by Mahmud and Fraser (2003). Analytical investigation of first
and second law characteristics of fluid flow and heat transfer inside a channel having two
parallel plates with finite gap between them for fully developed forced convection is
analyzed by these authors. Two dimensional laminar forced convection in a sintered
porous channel with inlet and outlet slots are numerically investigated by Hadim and
North (2005) propose a length averaged Nu and friction factor correlations proposed.
Theoretical and numerical analysis of second law for flow and heat transfer inside a
rectangular duct is studied by Narusawa (2001) for non-circular duct.

Recently, the artificial neural network (ANN) and the other soft computing
techniques have been shown to be particularly useful in heat transfer problems
(Thibault and Grandjean, 1991; Jambunathan et al., 1996; Pruvost et al., 2001; Ayhan
et al., 2004). Especially, the ANN technique offers an alternative approach to the
problem of flow geometry. It is a procedure that is usually used to predict the
response of a complex physical system that cannot be easily modeled mathematically.
The network is first trained by experimentally obtained input-output sets of data, after
which, it can be used for prediction. The manufacturer can train a network using the
experimental data; the constants or parameters of the trained network can then be
transferred to the user who can calculate the performance of the heat exchanger under
any other flow rate of channels with axial swirling-flow promoters.

Artificial neural network (ANNs)
ANN is an information processing system which information spreads parallel on.
This system consists of processing elements connected by single-sided connections. The
number of output signals is one, but it can be increased. ANN can determine its conditions
and adjust itself to provide different responses by using inputs and desired outputs, which
are given to the system. In practice, ANN depends on the identification and perception of
information data in very different structure and form (Ozbay and Karlik, 2002).

Last decades, it has been shown that neural networks have the ability to solve various
complex problems. On the other hand, multi-layered feed-forward networks have a better
ability to learn the correspondence between input patterns and teaching values from many
sample data by the error back-propagation (BP) algorithm (Ozbay and Karlik, 2002; Meric
et al., 1997; Karlık and Aydın, 2000; Ozyigit et al., 2001). Therefore, in this paper, we used a
three-layered feed forward neural network and trained it by error BP. The software of
ANN can be written to employ BP in a supervised learning paradigm in which the
generalized delta rule was used in adjusting the weight values (Ozbay and Karlik, 2002).
The basic structure of ANN used in this study is shown in Figure 1. Here, the number of
hidden nodes on the hidden layer must be the maximum of the number of input or output
nodes. Otherwise, training error will be high. As the result of training and tests made,
desired output for every input value is introduced to the system by realizing the learning
rule which changes or adjusts the weights of the network connections depending on the
input values or outputs of these inputs. The ANN adjusts itself gradually until realizing
the input-output relation, which the generalized delta rule was used in adjusting the
weight values. The output Oij of each unit ij is defined by:
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Oij ¼ f ðnetijÞ; netij ¼
i

X
wijOi þ uj ð1Þ

where,Oi is the output of unit i, andwij is the weight of the connection from unit j to unit i, uj
is the bias of unit j,S is a summation of every unit ijwhose output flows into unit j, and f(x)
is a monotonously increasing sigmoid function.

When the set of m-dimensional input patterns {ip ¼ ðip1; ip2; . . . ; ipmÞ; p [ P}
where P denotes set of presented patterns, and their corresponding desired
n-dimensional output patterns {tp ¼ ðtp1; tp2; . . . ; tpmÞ; p [ P} are provided, the
neural network is taught to output ideal patterns as follows. The squared error
function Ep for a pattern p is defined by:

Ep ¼
1

2
j [ output layer

X
tpj 2 Opj

� �2
: ð2Þ

The purpose is to make E ¼ SpEp small enough by choosing appropriate wji and uj.
To realize this purpose, a pattern p [ P is chosen successively and randomly, and then
wji and uj are changed by:

Dpwji ¼ 21
›Ep

›wji

� �
ð3Þ

Dpuj ¼ 21
›Ep

›uj

� �
ð4Þ

where, 1 is a small positive constant, by calculating the right hand side of equations (3)
and (4), it follows that:

Dpwji ¼ 1dpjOpi ð5Þ

Dpuj ¼ 1dpj ð6Þ

where:

Figure 1.
The structure of MLP

for this study
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dpj ¼

f ðnetjÞðtpj 2 OpjÞ ðwhen j belongs to the output layer:Þ

f 0ðnetjÞ
k

P
wkjdpk ðotherwiseÞ

8><
>: ð7Þ

Note that k in the above summation represents every unit k whose output follows into
unit j. In order to accelerate the computation, the momentum terms are added on
equations (5) and (6).

Dpwjiðnþ 1Þ ¼ 1dpjOpi þ aDpwjiðnÞ ð8Þ

Dpujðnþ 1Þ ¼ 1dpj þ aDpujðnÞ ð9Þ

where, n represents the number of learning cycles, and a is a small positive value.
In this study, by the iteration the optimum a and 1 constant values are found as
a ¼ 0.75, 1 ¼ 0.75, respectively. It can be shown in Figure 1, the structure of
multi-layer perceptron (MLP) is like 3:12:4, which means 3 neurons of input layer,
12 neurons of hidden layer, and 4 neurons of output layer. Optimum number of neuron
of hidden layer was found trial depending on MSE using same iteration as it can be
shown in Figure 2.

Thermodynamic irreversibility
There are many kinds of heat transfer augmentation techniques. Although these
techniques are useful for heat transfer augmentation, the judgment their value depends
on the evaluation method used. By stating that a method is “effective” usually means
that it is:

. highly efficient; and

. not environmental destructive.

Therefore, the choice of the evaluation method is important factor. For this reason,
exergy analysis method is chosen for this experimental study. In this method, the
impact of on augmentation technique on the irreversibility of a given heat exchanger
tube can be evaluated by calculating the entropy generation rate in the “augmented”
tube, and comparing it with the entropy generation in the “unaugmented” tube. This
comparison is made by the irreversibility, I. According to the second law of
thermodynamics, any natural process is irreversible and accompanied by the exergy
loss. The higher the irreversibility the larger the exergy loss is. This indicates that the
process is less perfect thermodynamically. In any heat-transfer process, there are two
irreversible phenomena. One comes from irreversible heat transfer due to finite

Figure 2.
Determination number of
optimum neurons of
hidden layer
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temperature difference, and the other from flow friction. In a heat exchanger utilizing, a
heat-transfer augmentation technique, such as axial swirling-flow promoting insert,
the exergy loss or irreversibility from heat transfer across finite temperature difference
is reduced while the exergy loss or irreversibility resulting from fluid friction increases.
The accumulative effect in the form of net exergy loss from these two factors
determinates the effectiveness of the augmentation technique. In this study, a formula
presenting the irreversibility in a tubular heat exchanger is derived first for the
constant temperature of the tube wall (1008C). Considering a constant Cp and density of
air over the entire temperature range the exergy loses can be calculated as follows:

I ¼ _mCpTo ln
T2

T1
þ

T2 2 T1

Tw

� �
2 _mRToln

P2

P1
: ð10Þ

Secondly, the geometric features of proposed augmentation technique are optimally
selected in order to yield the maximum reduction in the heat exchanger tube irreversibility.

Comparison experimental and simulation methods
The main features of the experimental setup are shown schematically in a Figure 3.
It consists of an entrance region, test region (heat exchanger and steam generator), and,
flow measurement and control. The air stream was heated in the heat exchanger of the
tube – in tube type with the inner tube heated by steam saturated at atmospheric
pressure. Thus, the air stream was heated at the constant temperature of the tube wall.
The experimental apparatus for air flow is operated in the suction mode. The ambient
air was sucked through the orifice plate, the heat exchanger and mass flow rate control
valve by the fan. Details are given in the reference (Ayhan-Saraç 2004).

The axial swirling-flow promoting insert is assembled inside the inner aluminum tube
which is instated in the center of the rectangular shape (cross section is 250 £ 250 mm)
steam dome which is called as the heat exchanger. The test tube in the heat exchanger is

Figure 3.
Schematic view of the

experimental apparatus
for the heat transfer study
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smooth aluminum pipe with 50 mm ID, and 2,000 mm length. Experimental investigations
were performed by heating streams of air in the test tube with different geometries and
positions furnished an axial swirling-flow promoter. The axial swirling-flow promoters
are inserted in the test tube, which are shown in the Figure 4.

One example of the swirling-flow promoters which is produced for measuring the drag
force can be shown in the Figure 5. A typical view of the decaying swirling-flow structure
produced from the flow visualization apparatus for an axial swirling-flow promoter is
shown in Figure 6. The distribution of the local temperature along the tube wall measured
by a set of thermocouples ten uniformly spaced at a distance. These are compared with
steam condensation temperature at an atmospheric air pressure. Both ends of the tube
were isolated thermally from in let and outlet metal tubing by means of nylon connectors
in order to eliminate heat loss in a longitudinal direction. The air stream temperatures at
the inlet and at the final cross-section of the tube were measured by means of two sets

Figure 5.
The axial swirl flow
generator with six blades
and 458 of the blade angle

Figure 4.
Positions of the axial flow
generators in the test tube
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x = L/2, 3L/4

x = L/4, L/2,
3L/4

C

D

E

F

G

HFF
17,8

794



of thermocouples. Each set was made of four units with junctions located at radial
positions, chosen so that the average of their indications was equal to the mean
temperature of the air in each cross-section of the test tube. The pressure drop in the air
stream was measured by a manometer connected with taps at the ends of the heat
exchanger.
The heat transfer characteristics and flow structure in turbulent flow through the tube
with swirling-flow promoting inserts have been investigated experimentally in the
range of Reynolds number (Re) between 4,000 and 32,000. The enhanced tube friction
factor f, and heat transfer indicator parameter theNudepend on the number of the blades
Nb, the blade angle b, number of the inserts Nin, the insert spacing length lsp, and Re,
among the other variables. The influence of the thickness of the blades, the surface micro
roughness, and the diameter of the blades supporter is assumed to be in significant.

Thermal performance and fluid flow characteristics of the test tubes are presented
empirical correlations. Correlations of the friction factor and heat transfer for these tubes
were developed by Ayhan-Saraç (2004). These correlations are based on experimental
data for all enhancement types. Since, data base covered wide range of enhancement
variables, the correlations are applicable to practically all tubes considered by designers.

In this study, seven different types of tubes are used. In order to test the effects of
promoter spacing and the influence of promoter geometries and their number on heat
transfer and their flow characteristics. These are:

. straight tube;

. four blades for three kinds of swirling angle with single unit, double and triple
unit arrangements; and

. six blades for three kinds of swirling angle with single unit, double and triple
unit arrangements.

Experiments were performed for turbulent flows in the range of Re between 4,000 and
32,000, and Prandtl number of 0.7. The convective heat transfer coefficients and pressure
drops provided by experimental studies and artificially generated data were examined.
Finally, the geometric features of the proposed flow geometry to improve heat transfer
can be selected in order to yield the maximum opposite reduction in heat exchange flow
irreversibility by using exergy destruction method. The optimum array geometries are
determined based on comparison of the average surfaceNu. The experimental results for
the different design constraints show that optimum axial swirling-flow promoter blades
number is 4, its blade angle is 308 the insert spacing length is 1,000 mm. It is shown in the
Figure 4, as the type C. Table I explains comparing results between neural networks and
experimental for a swirling flow promoters with six blades (its blades angles are 15, 30,
45, and 608), and three units.

Figure 6.
Swirling flow

visualization (the axial
swirl flow generator and
swirling flow structures)
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Figure 7 shows comparative results of Nu between experimental and ANN according to
Re and blade angles for 15, 30, 45, and 608, respectively. As it can be shown in Figure 7,
ANN method is very good alternative to solve optimum flow geometry of pipes.

Conclusions
This study presents a new application of ANN methods to find optimum flow
geometry for a pipe flow with an axial swirling-flow promoter inserts. This kind of
research on heat transfer and fluid flow characteristics take long time. The ANN
method is more useful to solve this problem easily. If the results compare with
experimental data, the prediction of results is supported. Also, ANN can be useful to
produce new values for proposed flow geometries. So, ANN application on heat
transfer and fluid-flow characteristics for these kinds of flow geometry is more
successful. Moreover, this new approach can be used successfully on new flow
geometries with heat transfer for future applications.
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